{ "id": "math/0512301", "version": "v2", "published": "2005-12-14T02:08:54.000Z", "updated": "2007-01-04T07:09:06.000Z", "title": "Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above", "authors": [ "Iosif Pinelis" ], "comment": "Published at http://dx.doi.org/10.1214/074921706000000743 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "IMS Lecture Notes Monograph Series 2006, Vol. 51, 33-52", "doi": "10.1214/074921706000000743", "categories": [ "math.PR" ], "abstract": "Let $(S_0,S_1,...)$ be a supermartingale relative to a nondecreasing sequence of $\\sigma$-algebras $H_{\\le0},H_{\\le1},...$, with $S_0\\le0$ almost surely (a.s.) and differences $X_i:=S_i-S_{i-1}$. Suppose that $X_i\\le d$ and $\\mathsf {Var}(X_i|H_{\\le i-1})\\le \\sigma_i^2$ a.s. for every $i=1,2,...$, where $d>0$ and $\\sigma_i>0$ are non-random constants. Let $T_n:=Z_1+...+Z_n$, where $Z_1,...,Z_n$ are i.i.d. r.v.'s each taking on only two values, one of which is $d$, and satisfying the conditions $\\mathsf {E}Z_i=0$ and $\\mathsf {Var}Z_i=\\sigma ^2:=\\frac{1}{n}(\\sigma_1^2+...+\\sigma_n^2)$. Then, based on a comparison inequality between generalized moments of $S_n$ and $T_n$ for a rich class of generalized moment functions, the tail comparison inequality $$ \\mathsf P(S_n\\ge y) \\le c \\mathsf P^{\\mathsf Lin,\\mathsf L C}(T_n\\ge y+\\tfrach2)\\quad\\forall y\\in \\mathbb R$$ is obtained, where $c:=e^2/2=3.694...$, $h:=d+\\sigma ^2/d$, and the function $y\\mapsto \\mathsf {P}^{\\mathsf {Lin},\\mathsf {LC}}(T_n\\ge y)$ is the least log-concave majorant of the linear interpolation of the tail function $y\\mapsto \\mathsf {P}(T_n\\ge y)$ over the lattice of all points of the form $nd+kh$ ($k\\in \\mathbb {Z}$). An explicit formula for $\\mathsf {P}^{\\mathsf {Lin},\\mathsf {LC}}(T_n\\ge y+\\tfrac{h}{2})$ is given. Another, similar bound is given under somewhat different conditions. It is shown that these bounds improve significantly upon known bounds.", "revisions": [ { "version": "v2", "updated": "2007-01-04T07:09:06.000Z" } ], "analyses": { "subjects": [ "60E15", "60G42", "60G48", "60G50" ], "keywords": [ "binomial upper bounds", "tail probabilities", "differences", "martingales", "tail comparison inequality" ], "tags": [ "monograph", "journal article", "lecture notes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12301P" } } }