{ "id": "math/0512147", "version": "v1", "published": "2005-12-07T08:22:27.000Z", "updated": "2005-12-07T08:22:27.000Z", "title": "A note on multiple Seshadri constants on surfaces", "authors": [ "Luis Fuentes Garcia" ], "comment": "4 pages", "categories": [ "math.AG" ], "abstract": "We give a bound for the multiple Seshadri constants on surfaces with Picard number 1. The result is a natural extension of the bound of A. Steffens for simple Seshadri constants. In particular, we prove that the Seshadri constant $\\epsilon(L; r)$ is maximal when $rL^2$ is a square.", "revisions": [ { "version": "v1", "updated": "2005-12-07T08:22:27.000Z" } ], "analyses": { "subjects": [ "14C20", "14J60" ], "keywords": [ "multiple seshadri constants", "simple seshadri constants", "natural extension", "picard number" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12147F" } } }