{ "id": "math/0512060", "version": "v1", "published": "2005-12-02T15:41:24.000Z", "updated": "2005-12-02T15:41:24.000Z", "title": "A Gessel-Viennot-type method for cycle systems in a directed graph", "authors": [ "Christopher R. H. Hanusa" ], "comment": "22 pages, 33 figures", "journal": "Electronic Journal of Combinatorics. Volume 13 (2006). Research Paper 37, 28 pp. (electronic)", "categories": [ "math.CO" ], "abstract": "We introduce a new determinantal method to count cycle systems in a directed graph that generalizes Gessel and Viennot's determinantal method on path systems. The method gives new insight into the enumeration of domino tilings of Aztec diamonds, Aztec pillows, and related regions.", "revisions": [ { "version": "v1", "updated": "2005-12-02T15:41:24.000Z" } ], "analyses": { "subjects": [ "05B45", "05C30", "05A15", "05B20", "05C38", "05C50", "05C70", "11A51", "11B83", "15A15", "15A36", "52C20" ], "keywords": [ "directed graph", "gessel-viennot-type method", "count cycle systems", "viennots determinantal method", "generalizes gessel" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....12060H" } } }