{ "id": "math/0511674", "version": "v1", "published": "2005-11-28T12:48:53.000Z", "updated": "2005-11-28T12:48:53.000Z", "title": "On the complexity of algebraic number I. Expansions in integer bases", "authors": [ "Boris Adamczewski", "Yann Bugeaud" ], "journal": "Ann. of Math. (2) 165 (2007), no. 2, 547--565", "categories": [ "math.NT" ], "abstract": "Let $b \\ge 2$ be an integer. We prove that the $b$-adic expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. Our main tool is a new, combinatorial transcendence criterion.", "revisions": [ { "version": "v1", "updated": "2005-11-28T12:48:53.000Z" } ], "analyses": { "subjects": [ "11J81", "11A63", "11B85", "68R15" ], "keywords": [ "integer bases", "irrational algebraic number", "combinatorial transcendence criterion", "irrational morphic numbers", "irrational automatic numbers" ], "tags": [ "journal article" ], "publication": { "publisher": "Princeton University and the Institute for Advanced Study", "journal": "Ann. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11674A" } } }