{ "id": "math/0511614", "version": "v1", "published": "2005-11-24T16:34:26.000Z", "updated": "2005-11-24T16:34:26.000Z", "title": "Exponential mixing for the Teichmuller flow", "authors": [ "Artur Avila", "Sebastien Gouezel", "Jean-Christophe Yoccoz" ], "comment": "49 pages", "categories": [ "math.DS", "math.GT" ], "abstract": "We study the dynamics of the Teichmuller flow in the moduli space of Abelian differentials (and more generally, its restriction to any connected component of a stratum). We show that the (Masur-Veech) absolutely continuous invariant probability measure is exponentially mixing for the class of Holder observables. A geometric consequence is that the $\\SL(2,\\R)$ action in the moduli space has a spectral gap.", "revisions": [ { "version": "v1", "updated": "2005-11-24T16:34:26.000Z" } ], "analyses": { "keywords": [ "teichmuller flow", "exponential mixing", "moduli space", "absolutely continuous invariant probability measure", "abelian differentials" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11614A" } } }