{ "id": "math/0511380", "version": "v3", "published": "2005-11-15T13:41:03.000Z", "updated": "2006-07-14T20:20:53.000Z", "title": "BGP-reflection functors and cluster combinatorics", "authors": [ "Bin Zhu" ], "comment": "version 3", "categories": [ "math.RT", "math.CO" ], "abstract": "We define Bernstein-Gelfand-Ponomarev reflection functors in the cluster categories of hereditary algebras. They are triangle equivalences which provide a natural quiver realization of the \"truncated simple reflections\" on the set of almost positive roots $\\Phi_{\\ge -1}$ associated to a finite dimensional semisimple Lie algebra. Combining with the tilting theory in cluster categories developed in [4], we give a unified interpretation via quiver representations for the generalized associahedra associated to the root systems of all Dynkin types (a simply-laced or non-simply-laced). This confirms the conjecture 9.1 in [4] in all Dynkin types.", "revisions": [ { "version": "v3", "updated": "2006-07-14T20:20:53.000Z" } ], "analyses": { "subjects": [ "16G20", "16G70" ], "keywords": [ "cluster combinatorics", "bgp-reflection functors", "finite dimensional semisimple lie algebra", "define bernstein-gelfand-ponomarev reflection functors", "dynkin types" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11380Z" } } }