{ "id": "math/0511297", "version": "v2", "published": "2005-11-11T12:25:30.000Z", "updated": "2006-01-09T10:21:17.000Z", "title": "Microlocal analysis in the dual of a Colombeau algebra: generalized wave front sets and noncharacteristic regularity", "authors": [ "Claudia Garetto" ], "categories": [ "math.AP", "math.FA" ], "abstract": "We introduce different notions of wave front set for the functionals in the dual of the Colombeau algebra $\\Gc(\\Om)$ providing a way to measure the $\\G$ and the $\\Ginf$- regularity in $\\LL(\\Gc(\\Om),\\wt{\\C})$. For the smaller family of functionals having a ``basic structure'' we obtain a Fourier transform-characterization for this type of generalized wave front sets and results of noncharacteristic $\\G$ and $\\Ginf$-regularity.", "revisions": [ { "version": "v2", "updated": "2006-01-09T10:21:17.000Z" } ], "analyses": { "subjects": [ "35S99", "13J99", "46F30", "46A20" ], "keywords": [ "generalized wave front sets", "colombeau algebra", "microlocal analysis", "noncharacteristic regularity", "basic structure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11297G" } } }