{ "id": "math/0511284", "version": "v2", "published": "2005-11-11T20:06:52.000Z", "updated": "2007-11-07T17:03:01.000Z", "title": "Fusion and convolution: applications to affine Kac-Moody algebras at the critical level", "authors": [ "Edward Frenkel", "Dennis Gaitsgory" ], "comment": "43 pages", "categories": [ "math.RT", "math.AG", "math.QA" ], "abstract": "Let g be a semi-simple Lie algebra, and let g^ be the corresponding affine Kac-Moody algebra. Consider the category of g^-modules at the critical level, on which the action of the Iwahori subalgebra integrates to algebraic action of the Iwahori subgroup I. We study the action on this category of the convolution functors with the \"central\" sheaves on the affine flag scheme G((t))/I. We show that each object of our category is an \"eigen-module\" with respect to these functors. In order to prove this, we use the fusion product of modules over the affine Kac-Moody algebra.", "revisions": [ { "version": "v2", "updated": "2007-11-07T17:03:01.000Z" } ], "analyses": { "keywords": [ "critical level", "applications", "semi-simple lie algebra", "affine flag scheme", "iwahori subalgebra integrates" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11284F" } } }