{ "id": "math/0511249", "version": "v2", "published": "2005-11-10T19:20:18.000Z", "updated": "2007-03-01T15:30:45.000Z", "title": "Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process", "authors": [ "Milton Jara" ], "comment": "Published at http://dx.doi.org/10.1214/009117906000000449 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2006, Vol. 34, No. 6, 2365-2381", "doi": "10.1214/009117906000000449", "categories": [ "math.PR" ], "abstract": "We show that for the mean zero simple exclusion process in $\\mathbb {Z}^d$ and for the asymmetric simple exclusion process in $\\mathbb{Z}^d$ for $d\\geq3$, the self-diffusion coefficient of a tagged particle is stable when approximated by simple exclusion processes on large periodic lattices. The proof depends on a similar stability property of the Sobolev inner product associated with the operator.", "revisions": [ { "version": "v2", "updated": "2007-03-01T15:30:45.000Z" } ], "analyses": { "subjects": [ "60K35" ], "keywords": [ "finite-dimensional approximation", "diffusion coefficient", "mean zero simple exclusion process", "asymmetric simple exclusion process", "large periodic lattices" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11249J" } } }