{ "id": "math/0511193", "version": "v1", "published": "2005-11-08T08:01:53.000Z", "updated": "2005-11-08T08:01:53.000Z", "title": "Nonlinear eigenvalue problems in Sobolev spaces with variable exponent", "authors": [ "Teodora Liliana Dinu" ], "comment": "14 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We study the boundary value problem $-{\\rm div}((|\\nabla u|^{p\\_1(x) -2}+|\\nabla u|^{p\\_2(x)-2})\\nabla u)=f(x,u)$ in $\\Omega$, $u=0$ on $\\partial\\Omega$, where $\\Omega$ is a smooth bounded domain in $\\RR^N$. We focus on the cases when $f\\_\\pm (x,u)=\\pm(-\\lambda|u|^{m(x)-2}u+|u|^{q(x)-2}u)$, where $m(x):=\\max\\{p\\_1(x),p\\_2(x)\\} < q(x) < \\frac{N\\cdot m(x)}{N-m(x)}$ for any $x\\in\\bar\\Omega$. In the first case we show the existence of infinitely many weak solutions for any $\\lambda>0$. In the second case we prove that if $\\lambda$ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a $\\ZZ\\_2$-symmetric version for even functionals of the Mountain Pass Lemma and some adequate variational methods.", "revisions": [ { "version": "v1", "updated": "2005-11-08T08:01:53.000Z" } ], "analyses": { "subjects": [ "35D05", "35J60", "35J70", "58E05", "68T40", "76A02" ], "keywords": [ "nonlinear eigenvalue problems", "variable exponent", "sobolev spaces", "adequate variational methods", "nontrivial weak solution" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11193L" } } }