{ "id": "math/0511134", "version": "v1", "published": "2005-11-05T16:17:15.000Z", "updated": "2005-11-05T16:17:15.000Z", "title": "The Grothendieck-Lefschetz theorem for normal projective varieties", "authors": [ "G. V. Ravindra", "V. Srinivas" ], "comment": "21 pages, no figures, to appear in J. Algebraic Geometry", "categories": [ "math.AG" ], "abstract": "We prove that for a normal projective variety $X$ in characteristic 0, and a base-point free ample line bundle $L$ on it, the restriction map of divisor class groups $\\Cl(X)\\to \\Cl(Y)$ is an isomorphism for a general member $Y\\in |L|$ provided that $\\dim{X}\\geq 4$. This is a generalization of the Grothendieck-Lefschetz Theorem, for divisor class groups of singular varieties.", "revisions": [ { "version": "v1", "updated": "2005-11-05T16:17:15.000Z" } ], "analyses": { "keywords": [ "normal projective variety", "grothendieck-lefschetz theorem", "divisor class groups", "base-point free ample line bundle", "singular varieties" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11134R" } } }