{ "id": "math/0511054", "version": "v1", "published": "2005-11-02T16:57:12.000Z", "updated": "2005-11-02T16:57:12.000Z", "title": "The Averaging lemma and regularizing effect", "authors": [ "Eitan Tadmor", "Terence Tao" ], "comment": "28 pages; no figures; submitted, Comm. Pure. Appl. Math", "categories": [ "math.AP" ], "abstract": "We prove new velocity averaging results for second-order multidimensional equations of the general form, $\\op(\\nabla_x,v)f(x,v)=g(x,v)$ where $\\op(\\nabla_x,v):=\\bba(v)\\cdot\\nabla_x-\\nabla_x^\\top\\cdot\\bbb(v)\\nabla_x$. These results quantify the Sobolev regularity of the averages, $\\int_vf(x,v)\\phi(v)dv$, in terms of the non-degeneracy of the set $\\{v: |\\op(\\ixi,v)|\\leq \\delta\\}$ and the mere integrability of the data, $(f,g)\\in (L^p_{x,v},L^q_{x,v})$. Velocity averaging is then used to study the \\emph{regularizing effect} in quasilinear second-order equations, $\\op(\\nabla_x,\\rho)\\rho=S(\\rho)$ using their underlying kinetic formulations, $\\op(\\nabla_x,v)\\chi_\\rho=g_{{}_S}$. In particular, we improve previous regularity statements for nonlinear conservation laws, and we derive completely new regularity results for convection-diffusion and elliptic equations driven by degenerate, non-isotropic diffusion.", "revisions": [ { "version": "v1", "updated": "2005-11-02T16:57:12.000Z" } ], "analyses": { "subjects": [ "35L65", "35K57" ], "keywords": [ "regularizing effect", "averaging lemma", "nonlinear conservation laws", "quasilinear second-order equations", "elliptic equations driven" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11054T" } } }