{ "id": "math/0510631", "version": "v1", "published": "2005-10-28T13:28:59.000Z", "updated": "2005-10-28T13:28:59.000Z", "title": "Centre, commutativite et conjugaison dans un graphe de groupe", "authors": [ "Jean-Philippe Preaux" ], "comment": "28 pages, in french", "categories": [ "math.GR" ], "abstract": "We give characterizations of the center, of conjugated and of commuting elements in a fundamental group of a graph of group. We deduce various results : on the one hand we give a sufficient condition for the center, the centralizers, and the root structures in such a group to be in some sense trivial, and on the other hand we prove that for any group G, the conjugacy problem reduces to the same problem in a double of G along any finite family of subgroups.", "revisions": [ { "version": "v1", "updated": "2005-10-28T13:28:59.000Z" } ], "analyses": { "subjects": [ "20E06", "20E08", "20E34", "20E45", "20F10", "57M05", "57M99" ], "keywords": [ "conjugaison dans", "commutativite", "conjugacy problem reduces", "fundamental group", "sufficient condition" ], "note": { "typesetting": "TeX", "pages": 28, "language": "fr", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10631P" } } }