{ "id": "math/0510577", "version": "v1", "published": "2005-10-26T20:06:06.000Z", "updated": "2005-10-26T20:06:06.000Z", "title": "Regularity of the distance function to the boundary", "authors": [ "YanYan Li", "Louis Nirenberg" ], "categories": [ "math.AP", "math.DG" ], "abstract": "Let $\\Omega$ be a domain in a smooth complete Finsler manifold, and let $G$ be the largest open subset of $\\Omega$ such that for every $x$ in $G$ there is a unique closest point from $\\partial \\Omega$ to $x$ (measured in the Finsler metric). We prove that the distance function from $\\partial \\Omega$ is in $C^{k,\\alpha}_{loc}(G\\cup \\partial \\Omega)$, $k\\ge 2$ and $0<\\alpha\\le 1$, if $\\partial \\Omega$ is in $C^{k,\\alpha}$.", "revisions": [ { "version": "v1", "updated": "2005-10-26T20:06:06.000Z" } ], "analyses": { "subjects": [ "35J60", "53A05" ], "keywords": [ "distance function", "regularity", "smooth complete finsler manifold", "largest open subset", "unique closest point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10577L" } } }