{ "id": "math/0510423", "version": "v1", "published": "2005-10-20T01:28:17.000Z", "updated": "2005-10-20T01:28:17.000Z", "title": "Random Menshov spectra", "authors": [ "Gady Kozma", "Alexander Olevskii" ], "comment": "6 pages. Very similar to journal version", "journal": "Proc. Amer. Math. Soc. 131:6 (2003), 1901-1906", "categories": [ "math.CA" ], "abstract": "We show that a spectrum of frequencies obtained by a random perturbation of the integers allows one to represent any measurable function on R by an almost everywhere converging sum of harmonics almost surely.", "revisions": [ { "version": "v1", "updated": "2005-10-20T01:28:17.000Z" } ], "analyses": { "subjects": [ "42A63", "42A61", "42A55" ], "keywords": [ "random menshov spectra", "random perturbation", "frequencies", "measurable function" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10423K" } } }