{ "id": "math/0510395", "version": "v1", "published": "2005-10-18T21:40:49.000Z", "updated": "2005-10-18T21:40:49.000Z", "title": "Bounds on the Castelnuovo-Mumford regularity of tensor products", "authors": [ "Giulio Caviglia" ], "comment": "9 pages", "categories": [ "math.AC", "math.AG" ], "abstract": "In this paper we show how, given a complex of graded modules and knowing some partial Castelnuovo-Mumford regularities for all the modules in the complex and for all the positive homologies, it is possible to get a bound on the regularity of the zero homology. We use this to prove that if $\\dim \\tor_1^R(M,N)\\leq1$ then $\\reg(M\\otimes N)\\leq \\reg(M)+\\reg(N)$, generalizing results of Chandler, Conca and Herzog, and Sidman. Finally we give a description of the regularity of a module in terms of the postulation numbers of filter regular hyperplane restrictions.", "revisions": [ { "version": "v1", "updated": "2005-10-18T21:40:49.000Z" } ], "analyses": { "subjects": [ "13D45", "13D02" ], "keywords": [ "castelnuovo-mumford regularity", "tensor products", "filter regular hyperplane restrictions", "partial castelnuovo-mumford regularities", "postulation numbers" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10395C" } } }