{ "id": "math/0510321", "version": "v1", "published": "2005-10-15T19:41:24.000Z", "updated": "2005-10-15T19:41:24.000Z", "title": "Complete surfaces of constant curvature in H2xR and S2xR", "authors": [ "Juan A. Aledo", "Jose M. Espinar", "Jose A. Galvez" ], "comment": "17 pages", "categories": [ "math.DG" ], "abstract": "We study isometric immersions of surfaces of constant curvature into the homogeneous spaces H2xR and S2xR. In particular, we prove that there exists a unique isometric immersion from the standard 2-sphere of constant curvature c>0 into H2xR and a unique one into S2xR when c>1, up to isometries of the ambient space. Moreover, we show that the hyperbolic plane of constant curvature c<-1 cannot be isometrically immersed into H2xR or S2xR.", "revisions": [ { "version": "v1", "updated": "2005-10-15T19:41:24.000Z" } ], "analyses": { "subjects": [ "53C42", "53C40" ], "keywords": [ "constant curvature", "complete surfaces", "study isometric immersions", "unique isometric immersion", "homogeneous spaces h2xr" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10321A" } } }