{ "id": "math/0510251", "version": "v2", "published": "2005-10-12T14:56:19.000Z", "updated": "2006-04-12T14:56:31.000Z", "title": "From triangulated categories to cluster algebras II", "authors": [ "Philippe Caldero", "Bernhard Keller" ], "comment": "23 pages. The proofs rely on a weaker version of positivity", "categories": [ "math.RT", "math.RA" ], "abstract": "In the acyclic case, we establish a one-to-one correspondence between the tilting objects of the cluster category and the clusters of the associated cluster algebra. This correspondence enables us to solve conjectures on cluster algebras. We prove a multiplicativity theorem, a denominator theorem, and some conjectures on properties of the mutation graph. As in the previous article, the proofs rely on the Calabi-Yau property of the cluster category.", "revisions": [ { "version": "v2", "updated": "2006-04-12T14:56:31.000Z" } ], "analyses": { "subjects": [ "16G20", "18E30" ], "keywords": [ "triangulated categories", "cluster category", "denominator theorem", "one-to-one correspondence", "multiplicativity theorem" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10251C" } } }