{ "id": "math/0510026", "version": "v1", "published": "2005-10-03T03:46:09.000Z", "updated": "2005-10-03T03:46:09.000Z", "title": "Buildings, elliptic curves, and the K(2)-local sphere", "authors": [ "Mark Behrens" ], "comment": "41 pages", "categories": [ "math.AT" ], "abstract": "We investigate a dense subgroup Gamma of the second Morava stabilizer group given by a certain group of quasi-isogenies of a supersingular elliptic curve in characteristic p. The group Gamma acts on the Bruhat-Tits building for GL_2(Q_l) through its action on the l-adic Tate module. This action has finite stabilizers, giving a small resolution for the homotopy fixed point spectrum (E_2^hGamma)^hGal by spectra of topological modular forms. Here, E_2 is a version of Morava E-theory and Gal = Gal(barF_p/F_p).", "revisions": [ { "version": "v1", "updated": "2005-10-03T03:46:09.000Z" } ], "analyses": { "keywords": [ "second morava stabilizer group", "group gamma acts", "homotopy fixed point spectrum", "l-adic tate module", "supersingular elliptic curve" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10026B" } } }