{ "id": "math/0510004", "version": "v1", "published": "2005-09-30T21:00:00.000Z", "updated": "2005-09-30T21:00:00.000Z", "title": "Categoricity from one successor cardinal in Tame Abstract Elementary Classes", "authors": [ "Rami Grossberg", "Monica VanDieren" ], "comment": "20 pages", "categories": [ "math.LO" ], "abstract": "Let K be an abstract elementary classes which has arbitrarily large models and satisfies the amalgamation and joint embedding properties. Theorem 1. Suppose K is \\chi-tame. If K is categorical in some \\lambda^+ >LS(K) then it is categorical in all \\mu\\geq (\\lambda+\\chi)^+. Theorem 2. If K is LS(K)-tame and is categorical both in LS(K) and in LS(K)^+ then K is categorical in all \\mu\\geq LS(K).", "revisions": [ { "version": "v1", "updated": "2005-09-30T21:00:00.000Z" } ], "analyses": { "subjects": [ "03C45", "03C52", "03C75" ], "keywords": [ "tame abstract elementary classes", "successor cardinal", "categoricity", "joint embedding properties", "arbitrarily large models" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10004G" } } }