{ "id": "math/0509621", "version": "v2", "published": "2005-09-27T07:42:45.000Z", "updated": "2007-12-11T12:02:01.000Z", "title": "A new invariant and parametric connected sum of embeddings", "authors": [ "A. Skopenkov" ], "comment": "13 pages, to appear in Fundamenta Mathematicae", "journal": "Fund. Math. 197 (2007), 253--269", "categories": [ "math.GT", "math.AT" ], "abstract": "We define an isotopy invariant of embeddings N -> R^m of manifolds into Euclidean space. This invariant together with the \\alpha-invariant of Haefliger-Wu is complete in the dimension range where the \\alpha-invariant could be incomplete. We also define parametric connected sum of certain embeddings (analogous to surgery). This allows to obtain new completeness results for the \\alpha-invariant and the following estimation of isotopy classes of embeddings. For the piecewise-linear category, a (3n-2m+2)-connected n-manifold N and (4n+4)/3 < m < (3n+3)/2 each preimage of \\alpha-invariant injects into a quotient of H_{3n-2m+3}(N), where the coefficients are Z for m-n odd and Z_2 for m-n even.", "revisions": [ { "version": "v2", "updated": "2007-12-11T12:02:01.000Z" } ], "analyses": { "keywords": [ "embeddings", "define parametric connected sum", "isotopy invariant", "m-n odd", "euclidean space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9621S" } } }