{ "id": "math/0509485", "version": "v1", "published": "2005-09-21T15:37:55.000Z", "updated": "2005-09-21T15:37:55.000Z", "title": "A finiteness property of torsion points", "authors": [ "Matthew Baker", "Su-Ion Ih", "Robert Rumely" ], "comment": "27 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "Let k be a number field, let E/k be an elliptic curve, and let S be a finite set of places of k contianing the archimedean places. Let F be an algebraic closure of k. We prove that if a point P in E(F) is nontorsion, then there are only finitely many torsion points x in E(F) which are S-integral with respect to P. We also prove an analogue of this for the multiplicative group, and formulate conjectural generalizations for abelian varieties and dynamical systems.", "revisions": [ { "version": "v1", "updated": "2005-09-21T15:37:55.000Z" } ], "analyses": { "subjects": [ "11G05", "37F10", "11J86", "11J71", "11G50" ], "keywords": [ "torsion points", "finiteness property", "formulate conjectural generalizations", "algebraic closure", "elliptic curve" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9485B" } } }