{ "id": "math/0509448", "version": "v2", "published": "2005-09-20T10:06:40.000Z", "updated": "2009-01-26T18:24:06.000Z", "title": "Sur la compatibilité à Frobenius de l'isomorphisme de dualité relative", "authors": [ "Daniel Caro" ], "categories": [ "math.AG" ], "abstract": "Let $\\V$ be a mixed characteristic complete discrete valuation ring, let $\\X$ and $\\Y$ be two smooth formal $\\V$-schemes, let $f_0$ : $X \\to Y$ be a projective morphism between their special fibers, let $T$ be a divisor of $Y$ such that $T_X := f_0 ^{-1} (T) $ is a divisor of $X$ and let $\\M \\in D ^\\mathrm{b}_\\mathrm{coh} (\\D ^\\dag_{\\X} (\\hdag T_X)_{\\Q})$. We construct the relative duality isomorphism $ f_{0T +} \\circ \\DD_{\\X, T_X} (\\M) \\riso \\DD_{\\Y, T} \\circ f_{0T +} (\\M)$. This generalizes the known case when there exists a lifting $f : \\X \\to \\Y$ of $f_{0}$. Moreover, when $f_0$ is a closed immersion, we prove that this isomorphism commutes with Frobenius.", "revisions": [ { "version": "v2", "updated": "2009-01-26T18:24:06.000Z" } ], "analyses": { "subjects": [ "14F10", "14F30" ], "keywords": [ "mixed characteristic complete discrete valuation", "lisomorphisme", "characteristic complete discrete valuation ring", "smooth formal", "special fibers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9448C" } } }