{ "id": "math/0509384", "version": "v1", "published": "2005-09-16T15:46:58.000Z", "updated": "2005-09-16T15:46:58.000Z", "title": "Nonexistence of solutions in $(0,1)$ for K-P-P-type equations for all $d\\ge 1$", "authors": [ "J. Englander", "P. L. Simon" ], "comment": "6 pages", "categories": [ "math.AP", "math.PR" ], "abstract": "Consider the KPP-type equation of the form $\\Delta u+f(u)=0$, where $f:[0,1] \\to \\mathbb R_{+}$ is a concave function. We prove for arbitrary dimensions that there is no solution bounded in $(0,1)$. The significance of this result from the point of view of probability theory is also discussed.", "revisions": [ { "version": "v1", "updated": "2005-09-16T15:46:58.000Z" } ], "analyses": { "subjects": [ "35J60", "35J65", "60J80" ], "keywords": [ "k-p-p-type equations", "nonexistence", "kpp-type equation", "concave function", "arbitrary dimensions" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9384E" } } }