{ "id": "math/0509377", "version": "v2", "published": "2005-09-16T13:24:16.000Z", "updated": "2005-09-21T07:58:56.000Z", "title": "A Note on the Solvablity of Groups", "authors": [ "Shiheng Li", "Wujie Shi" ], "comment": "8 pages", "categories": [ "math.GR" ], "abstract": "Let $M$ be a maximal subgroup of a finite group $G$ and $K/L$ be a chief factor such that $L\\leq M$ while $K\\nsubseteq M$. We call the group $M\\cap K/L$ a $c$\\ns section of $M$. And we define $Sec(M)$ to be the abstract group that is isomorphic to a $c$\\ns section of $M$. For every maximal subgroup $M$ of $G$, assume that Sec($M$) is supersolvable. Then any composition factor of $G$ is isomorphic to $L_2(p)$ or $Z_q$, where $p$ and $q$ are primes, and $p\\equiv\\pm 1(mod 8)$. This result answer a question posed by ref. \\cite{WL}.", "revisions": [ { "version": "v2", "updated": "2005-09-21T07:58:56.000Z" } ], "analyses": { "subjects": [ "20D10", "20E28" ], "keywords": [ "maximal subgroup", "ns section", "solvablity", "result answer", "finite group" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9377L" } } }