{ "id": "math/0509312", "version": "v7", "published": "2005-09-14T13:34:59.000Z", "updated": "2009-03-23T14:06:02.000Z", "title": "A new bound for the smallest $x$ with $π(x) > li(x)$", "authors": [ "Kuok Fai Chao", "Roger Plymen" ], "comment": "Final version, to be published in the International Journal of Number Theory [copyright World Scientific Publishing Company][www.worldscinet.com/ijnt]", "categories": [ "math.NT" ], "abstract": "We reduce the leading term in Lehman's theorem. This improved estimate allows us to refine the main theorem of Bays and Hudson. Entering $2,000,000$ Riemann zeros, we prove that there exists $x$ in the interval $[exp(727.951858), exp(727.952178)]$ for which $\\pi(x)-\\li(x) > 3.2 \\times 10^{151}$. There are at least $10^{154}$ successive integers $x$ in this interval for which $\\pi(x)>\\li(x)$. This interval is strictly a sub-interval of the interval in Bays and Hudson, and is narrower by a factor of about 12.", "revisions": [ { "version": "v7", "updated": "2009-03-23T14:06:02.000Z" } ], "analyses": { "subjects": [ "11N05", "11Y35", "11M26" ], "keywords": [ "riemann zeros", "lehmans theorem", "main theorem", "leading term", "successive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9312C" } } }