{ "id": "math/0509292", "version": "v7", "published": "2005-09-13T20:05:57.000Z", "updated": "2007-04-01T20:19:26.000Z", "title": "Periodic Orbits of Billiards on an Equilateral Triangle", "authors": [ "Andrew M. Baxter", "Ron Umble" ], "comment": "Version 7: Minor edits made, some figures redrawn, Table 1 moved from appendix to body of text.", "categories": [ "math.DS", "math.CO" ], "abstract": "We give a complete solution of the following problem: Find, classify and count the (classes of) periodic orbits on an equilateral triangle. We prove that Fagnano's period 3 orbit is the only periodic orbit with odd period. A periodic orbit is either prime or some d-fold iterate thereof. We count prime and iterate periodic orbits of period $2n$ via a bijection with a certain partition of $n$, then count only prime orbits using the prime factorization of $n$.", "revisions": [ { "version": "v7", "updated": "2007-04-01T20:19:26.000Z" } ], "analyses": { "subjects": [ "37E15", "05A15", "05A17", "51F15" ], "keywords": [ "equilateral triangle", "d-fold iterate thereof", "iterate periodic orbits", "fagnanos period", "complete solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9292B" } } }