{ "id": "math/0509274", "version": "v2", "published": "2005-09-13T09:49:19.000Z", "updated": "2006-06-12T17:03:04.000Z", "title": "Error estimate for the Finite Volume Scheme applied to the advection equation", "authors": [ "Benoit Merlet", "Julien Vovelle" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "We study the convergence of a Finite Volume scheme for the linear advection equation with a Lipschitz divergence-free speed in $\\R^d$. We prove a $h^{1/2}$-error estimate in the $L^\\infty(0,t;L^1)$-norm for $BV$ data. This result was expected from numerical experiments and is optimal.", "revisions": [ { "version": "v2", "updated": "2006-06-12T17:03:04.000Z" } ], "analyses": { "subjects": [ "35L65", "65M15" ], "keywords": [ "finite volume scheme", "error estimate", "linear advection equation", "lipschitz divergence-free", "convergence" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9274M" } } }