{ "id": "math/0509252", "version": "v2", "published": "2005-09-12T11:44:55.000Z", "updated": "2007-12-03T19:18:37.000Z", "title": "q-Schur algebras and complex reflection groups, I", "authors": [ "Raphael Rouquier" ], "comment": "Corrected version, 5.2.3 and 5.2.4 are new", "categories": [ "math.RT", "math.QA" ], "abstract": "We show that the category O for a rational Cherednik algebra of type A is equivalent to modules over a q-Schur algebra (parameter not a half integer), providing thus character formulas for simple modules. We give some generalization to B_n(d). We prove an ``abstract'' translation principle. These results follow from the unicity of certain highest categories covering Hecke algebras. We also provide a semi-simplicity criterion for Hecke algebras of complex reflection groups.", "revisions": [ { "version": "v2", "updated": "2007-12-03T19:18:37.000Z" } ], "analyses": { "keywords": [ "complex reflection groups", "q-schur algebra", "highest categories covering hecke algebras", "rational cherednik algebra", "semi-simplicity criterion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9252R" } } }