{ "id": "math/0509243", "version": "v4", "published": "2005-09-11T17:31:46.000Z", "updated": "2006-09-22T18:16:32.000Z", "title": "On Igusa zeta functions of monomial ideals", "authors": [ "Jason Howald", "Mircea Mustata", "Cornelia Yuen" ], "comment": "10 pages; to appear in Proc. Amer. Math. Soc", "categories": [ "math.AG", "math.AC" ], "abstract": "We show that the real parts of the poles of the Igusa zeta function of a monomial ideal can be computed from the torus-invariant divisors on the normalized blowing-up along the ideal. Moreover, we show that every such number is a root of the Bernstein-Sato polynomial associated to the monomial ideal.", "revisions": [ { "version": "v4", "updated": "2006-09-22T18:16:32.000Z" } ], "analyses": { "subjects": [ "14B05", "14M25" ], "keywords": [ "igusa zeta function", "monomial ideal", "real parts", "torus-invariant divisors", "normalized blowing-up" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9243H" } } }