{ "id": "math/0509224", "version": "v3", "published": "2005-09-09T18:09:58.000Z", "updated": "2005-10-07T23:21:20.000Z", "title": "Lagrangian fibrations on Hilbert schemes of points on K3 surfaces", "authors": [ "Justin Sawon" ], "comment": "21 pages, original (stronger) version of Theorem 2 proved", "journal": "J. Algebraic Geom. 16 (2007), no. 3, 477-497", "categories": [ "math.AG" ], "abstract": "Let $\\mathrm{Hilb}^gS$ be the Hilbert scheme of $g$ points on a K3 surface $S$. Suppose that $\\mathrm{Pic}S\\cong\\Z C$ where $C$ is a smooth curve with $C^2=2(g-1)n^2$. We prove that $\\mathrm{Hilb}^gS$ is a Lagrangian fibration.", "revisions": [ { "version": "v3", "updated": "2005-10-07T23:21:20.000Z" } ], "analyses": { "subjects": [ "53C26", "14D06", "14J28", "14J60" ], "keywords": [ "hilbert scheme", "k3 surface", "lagrangian fibration" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9224S" } } }