{ "id": "math/0509199", "version": "v1", "published": "2005-09-08T20:42:29.000Z", "updated": "2005-09-08T20:42:29.000Z", "title": "On unique continuation of solutions of Schrödinger equations", "authors": [ "L. Escauriaza", "C. E. Kenig", "G. Ponce", "L. Vega" ], "categories": [ "math.AP" ], "abstract": "We study uniqueness properties of solutions of Schr\\\"odinger equations. The aim is to obtain sufficient conditions on the decay behavior of the difference of two solution $u_1-u_2$ of the equation at two different times $t_0=0$ and $t_1=1$ which guarantee the uniqueness of the solution, i.e. that $u_1\\equiv u_2$.", "revisions": [ { "version": "v1", "updated": "2005-09-08T20:42:29.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "schrödinger equations", "unique continuation", "study uniqueness properties", "sufficient conditions", "decay behavior" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9199E" } } }