{ "id": "math/0509093", "version": "v3", "published": "2005-09-05T19:28:05.000Z", "updated": "2007-06-28T13:14:51.000Z", "title": "Absolutely continuous, invariant measures for dissipative, ergodic transformations", "authors": [ "Jon. Aaronson", "Tom Meyerovitch" ], "comment": "example and reference added", "journal": "Colloq. Math. 110 (2008), no. 1, 193--199", "categories": [ "math.DS", "math.PR" ], "abstract": "We show that a dissipative, ergodic measure preserving transformation of a sigma-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these.", "revisions": [ { "version": "v3", "updated": "2007-06-28T13:14:51.000Z" } ], "analyses": { "subjects": [ "37A05", "37A40" ], "keywords": [ "invariant measures", "ergodic transformations", "absolutely continuous", "non-atomic measure space", "dissipative" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9093A" } } }