{ "id": "math/0509057", "version": "v2", "published": "2005-09-02T22:15:07.000Z", "updated": "2005-11-18T18:39:55.000Z", "title": "The Segal-Bargmann transform for the heat equation associated with root systems", "authors": [ "Gestur Olafsson", "Henrik Schlichtkrull" ], "comment": "Two corrections", "categories": [ "math.AP" ], "abstract": "We study the heat equation associated to a multiplicity function on a root system, where the corresponding Laplace operator has been defined by Heckman and Opdam. In particular, we describe the image of the associated Segal-Bargmann transform as a space of holomorphic functions. In the case where the multiplicity function corresponds to a Riemannian symmetric space G/K of noncompact type, we obtain a description of the image of the space of K-invariant L^2-function on G/K under the Segal-Bargmann transform associated to the heat equation on G/K, thus generalizing (and reproving) a result of B. Hall for spaces of complex type.", "revisions": [ { "version": "v2", "updated": "2005-11-18T18:39:55.000Z" } ], "analyses": { "subjects": [ "33C67" ], "keywords": [ "heat equation", "segal-bargmann transform", "root system", "riemannian symmetric space g/k", "multiplicity function corresponds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9057O" } } }