{ "id": "math/0508646", "version": "v2", "published": "2005-08-31T17:12:32.000Z", "updated": "2005-09-02T17:35:23.000Z", "title": "The Schur-Horn theorem for operators and frames with prescribed norms and frame operator", "authors": [ "J. Antezana", "P. Massey", "M. Ruiz", "D. Stojanoff" ], "comment": "To appear in Illinois Journal of Math", "categories": [ "math.FA" ], "abstract": "Let $\\mathcal H$ be a Hilbert space. Given a bounded positive definite operator $S$ on $\\mathcal H$, and a bounded sequence $\\mathbf{c} = \\{c_k \\}_{k \\in \\mathbb N}$ of non negative real numbers, the pair $(S, \\mathbf{c})$ is frame admissible, if there exists a frame $\\{f_k \\}_{k \\in \\mathbb{N}} $ on $\\mathcal H$ with frame operator $S$, such that $\\|f_k \\|^2 = c_k$, $k \\in \\mathbb {N}$. We relate the existence of such frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use it to get necessary conditions (and to generalize known sufficient conditions) for a pair $(S, \\mathbf{c})$, to be frame admissible.", "revisions": [ { "version": "v2", "updated": "2005-09-02T17:35:23.000Z" } ], "analyses": { "subjects": [ "42C15", "47A05" ], "keywords": [ "schur-horn theorem", "frame operator", "prescribed norms", "non negative real numbers", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8646A" } } }