{ "id": "math/0508496", "version": "v1", "published": "2005-08-25T10:32:39.000Z", "updated": "2005-08-25T10:32:39.000Z", "title": "The Socle and finite dimensionality of some Banach algebras", "authors": [ "Ali Ghaffari", "Ali Reza Medghalchi" ], "comment": "4 pages, no figures, no tables", "journal": "Proc. Indian Acad. Sci. (Math. Sci.), Vol. 115, No. 3, August 2005, pp. 327-330", "categories": [ "math.FA" ], "abstract": "The purpose of this note is to describe some algebraic conditions on a Banach algebra which force it to be finite dimensional. One of the main results in Theorem~2 which states that for a locally compact group $G$, $G$ is compact if there exists a measure $\\mu$ in $\\hbox{Soc}(L^{1}(G))$ such that $\\mu(G) \\neq 0$. We also prove that $G$ is finite if $\\hbox{Soc}(M(G))$ is closed and every nonzero left ideal in $M(G)$ contains a minimal left ideal.", "revisions": [ { "version": "v1", "updated": "2005-08-25T10:32:39.000Z" } ], "analyses": { "subjects": [ "22A25", "46H15" ], "keywords": [ "banach algebra", "finite dimensionality", "nonzero left ideal", "minimal left ideal", "main results" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8496G" } } }