{ "id": "math/0508388", "version": "v1", "published": "2005-08-21T01:50:10.000Z", "updated": "2005-08-21T01:50:10.000Z", "title": "The Higher Connectivity of Intersections of Real Quadrics", "authors": [ "Michael Larsen", "Ayelet Lindenstrauss" ], "comment": "13 pages", "categories": [ "math.AT", "math.AG" ], "abstract": "A linear system of real quadratic forms defines a real projective variety. The real non-singular locus of this variety (more precisely of the underlying scheme) has a highly connected double cover as long as each non-zero form in the system has sufficiently high Witt index.", "revisions": [ { "version": "v1", "updated": "2005-08-21T01:50:10.000Z" } ], "analyses": { "subjects": [ "14P25" ], "keywords": [ "real quadrics", "higher connectivity", "intersections", "real quadratic forms defines", "sufficiently high witt index" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8388L" } } }