{ "id": "math/0508378", "version": "v2", "published": "2005-08-19T21:48:34.000Z", "updated": "2006-03-17T06:37:37.000Z", "title": "Moments of the derivative of the Riemann zeta-function and of characteristic polynomials", "authors": [ "J. Brian Conrey", "Michael O. Rubinstein", "Nina C. Snaith" ], "comment": "19 pages", "categories": [ "math.NT", "math-ph", "math.MP" ], "abstract": "We investigate the moments of the derivative, on the unit circle, of characteristic polynomials of random unitary matrices and use this to formulate a conjecture for the moments of the derivative of the Riemann zeta-function on the critical line. We do the same for the analogue of Hardy's Z-function, the characteristic polynomial multiplied by a suitable factor to make it real on the unit circle. Our formulae are expressed in terms of a determinant of a matrix whose entries involve the I-Bessel function and, alternately, by a combinatorial sum.", "revisions": [ { "version": "v2", "updated": "2006-03-17T06:37:37.000Z" } ], "analyses": { "subjects": [ "11M06", "15A52" ], "keywords": [ "riemann zeta-function", "unit circle", "derivative", "random unitary matrices", "hardys z-function" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8378C" } } }