{ "id": "math/0508261", "version": "v2", "published": "2005-08-15T15:18:25.000Z", "updated": "2005-08-16T04:43:30.000Z", "title": "Laws of the iterated logarithm for α-time Brownian motion", "authors": [ "Erkan Nane" ], "comment": "30 pages", "journal": "Electronic Journal of Probability, 11 (2006), 434-459.", "categories": [ "math.PR" ], "abstract": "We introduce a class of iterated processes called $\\alpha$-time Brownian motion for $0<\\alpha \\leq 2$. These are obtained by taking Brownian motion and replacing the time parameter with a symmetric $\\alpha$-stable process. We prove a Chung-type law of the iterated logarithm (LIL) for these processes which is a generalization of LIL proved in \\cite{hu} for iterated Brownian motion. When $\\alpha =1$ it takes the following form $$ \\liminf_{T\\to\\infty}T^{-1/2}(\\log \\log T) \\sup_{0\\leq t\\leq T}|Z_{t}|=\\pi^{2}\\sqrt{\\lambda_{1}} a.s. $$ where $\\lambda_{1}$ is the first eigenvalue for the Cauchy process in the interval $[-1,1].$ We also define the local time $L^{*}(x,t)$ and range $R^{*}(t)=|\\{x: Z(s)=x \\text{for some} s\\leq t\\}|$ for these processes for $1<\\alpha <2$. We prove that there are universal constants $c_{R},c_{L}\\in (0,\\infty) $ such that $$ \\limsup_{t\\to\\infty}\\frac{R^{*}(t)}{(t/\\log \\log t)^{1/2\\alpha}\\log \\log t}= c_{R} a.s. $$ $$ \\liminf_{t\\to\\infty} \\frac{\\sup_{x\\in \\RR{R}}L^{*}(x,t)}{(t/\\log \\log t)^{1-1/2\\alpha}}= c_{L} a.s. $$", "revisions": [ { "version": "v2", "updated": "2005-08-16T04:43:30.000Z" } ], "analyses": { "subjects": [ "60J65", "60K99" ], "keywords": [ "iterated logarithm", "time brownian motion", "time parameter", "chung-type law", "universal constants" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8261N" } } }