{ "id": "math/0508206", "version": "v1", "published": "2005-08-11T16:17:37.000Z", "updated": "2005-08-11T16:17:37.000Z", "title": "A counterexample to dispersive estimates for Schrödinger operators in higher dimensions", "authors": [ "M. Goldberg", "M. Visan" ], "journal": "Comm. Math. Phys. 266 no. 1 (2006), 211-238.", "doi": "10.1007/s00220-006-0013-5", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In dimension $n>3$ we show the existence of a compactly supported potential in the differentiability class $C^\\alpha$, $\\alpha < \\frac{n-3}2$, for which the solutions to the linear Schr\\\"odinger equation in $\\R^n$, $$ -i\\partial_t u = - \\Delta u + Vu, \\quad u(0)=f, $$ do not obey the usual $L^1\\to L^{\\infty}$ dispersive estimate. This contrasts with known results in dimensions $n \\leq 3$, where a pointwise decay condition on $V$ is generally sufficient to imply dispersive bounds.", "revisions": [ { "version": "v1", "updated": "2005-08-11T16:17:37.000Z" } ], "analyses": { "keywords": [ "dispersive estimate", "schrödinger operators", "higher dimensions", "counterexample", "differentiability class" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }