{ "id": "math/0508079", "version": "v1", "published": "2005-08-03T16:38:46.000Z", "updated": "2005-08-03T16:38:46.000Z", "title": "Isogenies of elliptic curves and the Morava stabilizer group", "authors": [ "Mark Behrens", "Tyler Lawson" ], "comment": "16 pages, to appear in J. Pure Appl. Alg", "categories": [ "math.AT" ], "abstract": "Let MS_2 be the p-primary second Morava stabilizer group, C a supersingular elliptic curve over \\br{FF}_p, O the ring of endomorphisms of C, and \\ell a topological generator of Z_p^x (respectively Z_2^x/{+-1} if p = 2). We show that for p > 2 the group \\Gamma \\subseteq O[1/\\ell]^x of quasi-endomorphisms of degree a power of \\ell is dense in MS_2. For p = 2, we show that \\Gamma is dense in an index 2 subgroup of MS_2.", "revisions": [ { "version": "v1", "updated": "2005-08-03T16:38:46.000Z" } ], "analyses": { "subjects": [ "11R52", "14H52", "55Q51" ], "keywords": [ "p-primary second morava stabilizer group", "supersingular elliptic curve", "endomorphisms" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8079B" } } }