{ "id": "math/0508048", "version": "v1", "published": "2005-08-01T19:42:16.000Z", "updated": "2005-08-01T19:42:16.000Z", "title": "On nilpotent groups and conjugacy classes", "authors": [ "Edith Adan-Bante" ], "comment": "8 pages", "categories": [ "math.GR" ], "abstract": "Let $G$ be a nilpotent group and $a\\in G$. Let $a^G=\\{g^{-1}ag\\mid g\\in G\\}$ be the conjugacy class of $a$ in $G$. Assume that $a^G$ and $b^G$ are conjugacy classes of $G$ with the property that $|a^G|=|b^G|=p$, where $p$ is an odd prime number. Set $a^G b^G=\\{xy\\mid x\\in a^G, y\\in b^G\\}$. Then either $a^G b^G=(ab)^G$ or $a^G b^G$ is the union of at least $\\frac{p+1}{2}$ distinct conjugacy classes. As an application of the previous result, given any nilpotent group $G$ and any conjugacy class $a^G$ of size $p$, we describe the square $a^G a^G$ of $a^G$ in terms of conjugacy classes of $G$.", "revisions": [ { "version": "v1", "updated": "2005-08-01T19:42:16.000Z" } ], "analyses": { "keywords": [ "nilpotent group", "distinct conjugacy classes", "odd prime number", "application" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8048A" } } }