{ "id": "math/0508030", "version": "v1", "published": "2005-08-01T09:27:41.000Z", "updated": "2005-08-01T09:27:41.000Z", "title": "On some enumerative aspects of generalized associahedra", "authors": [ "Christos A. Athanasiadis" ], "comment": "8 pages", "categories": [ "math.CO", "math.GR" ], "abstract": "We prove a conjecture of F. Chapoton relating certain enumerative invariants of (a) the cluster complex associated by S. Fomin and A. Zelevinsky to a finite root system and (b) the lattice of noncrossing partitions associated to the corresponding finite real reflection group.", "revisions": [ { "version": "v1", "updated": "2005-08-01T09:27:41.000Z" } ], "analyses": { "subjects": [ "20F55", "05E99" ], "keywords": [ "enumerative aspects", "generalized associahedra", "corresponding finite real reflection group", "finite root system", "cluster complex" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8030A" } } }