{ "id": "math/0508004", "version": "v6", "published": "2005-07-29T22:32:02.000Z", "updated": "2009-04-17T13:55:11.000Z", "title": "Intrinsic linking and knotting of graphs in arbitrary 3-manifolds", "authors": [ "Erica Flapan", "Hugh Howards", "Don Lawrence", "Blake Mellor" ], "comment": "This is the version published by Algebraic & Geometric Topology on 9 August 2006", "journal": "Algebr. Geom. Topol. 6 (2006) 1025-1035", "doi": "10.2140/agt.2006.6.1025", "categories": [ "math.GT", "math.CO" ], "abstract": "We prove that a graph is intrinsically linked in an arbitrary 3-manifold M if and only if it is intrinsically linked in S^3. Also, assuming the Poincare Conjecture, we prove that a graph is intrinsically knotted in M if and only if it is intrinsically knotted in S^3.", "revisions": [ { "version": "v6", "updated": "2009-04-17T13:55:11.000Z" } ], "analyses": { "subjects": [ "05C10", "57M25" ], "keywords": [ "intrinsic linking", "poincare conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8004F" } } }