{ "id": "math/0507588", "version": "v1", "published": "2005-07-28T14:06:14.000Z", "updated": "2005-07-28T14:06:14.000Z", "title": "On the degree of regularity of generalized van der Waerden triples", "authors": [ "Nikos Frantzikinakis", "Bruce Landman", "Aaron Robertson" ], "comment": "5 pages", "categories": [ "math.CO" ], "abstract": "Let $1 \\leq a \\leq b$ be integers. A triple of the form $(x,ax+d,bx+2d)$, where $x,d$ are positive integers is called an {\\em (a,b)-triple}. The {\\em degree of regularity} of the family of all $(a,b)$-triples, denoted dor($a,b)$, is the maximum integer $r$ such that every $r$-coloring of $\\mathbb{N}$ admits a monochromatic $(a,b)$-triple. We settle, in the affirmative, the conjecture that dor$(a,b) < \\infty$ for all $(a,b) \\neq (1,1)$. We also disprove the conjecture that dor($a,b) \\in \\{1,2,\\infty\\}$ for all $(a,b)$.", "revisions": [ { "version": "v1", "updated": "2005-07-28T14:06:14.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "generalized van der waerden triples", "regularity", "maximum integer", "conjecture", "denoted dor" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7588F" } } }