{ "id": "math/0507583", "version": "v2", "published": "2005-07-28T09:36:10.000Z", "updated": "2006-02-02T21:45:57.000Z", "title": "Regularity bounds for curves by minimal generators and Hilbert function", "authors": [ "Francesca Cioffi", "Maria Grazia Marinari", "Luciana Ramella" ], "comment": "9 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "Let $\\rho_C$ be the regularity of the Hilbert function of a projective curve $C$ in $\\mathbb P^n_K$ over an algebraically closed field $K$ and $\\alpha_1,...,\\alpha_{n-1}$ be minimal degrees for which there exists a complete intersection of type $(\\alpha_1,...,\\alpha_{n-1})$ containing the curve $C$. Then the Castelnuovo-Mumford regularity of $C$ is upper bounded by $\\max\\{\\rho_C+1,\\alpha_1+...+\\alpha_{n-1}-(n-2)\\}$. We study and, for space curves, refine the above bound providing several examples.", "revisions": [ { "version": "v2", "updated": "2006-02-02T21:45:57.000Z" } ], "analyses": { "subjects": [ "14F17", "14H50" ], "keywords": [ "hilbert function", "minimal generators", "regularity bounds", "minimal degrees", "complete intersection" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7583C" } } }