{ "id": "math/0507491", "version": "v1", "published": "2005-07-23T05:16:41.000Z", "updated": "2005-07-23T05:16:41.000Z", "title": "Lusternik-Schnirelmann category of Spin{9}", "authors": [ "Norio Iwase", "Akira Kono" ], "comment": "12pages", "categories": [ "math.AT" ], "abstract": "Let G be a compact connected Lie group and p : E \\to {\\Sigma}^2V a principal G-bundle with a characteristic map \\alpha : A={\\Sigma}V \\to G. By combining cone decomposition arguments in Iwase-Mimura-Nishimoto [3,5] with computations of higher Hopf invariants introduced in Iwase [8], we generalize the result in Iwase-Mimura [12]: Let {F_{i}|0 \\leq i \\leq m} be a cone-decomposition of G with a canonical structure map \\sigma_{i} of cat(F_{i}) \\leq i for i \\leq m. We have cat(E) \\leq \\Max(m+n,m+2) for n \\geq 1, if \\alpha is compressible into F_{n} \\subseteq F_{m} \\simeq G and H^{\\sigma_n}_n(\\alpha) = 0, under a suitable compatibility condition. On the other hand, calculations of Hamanaka-Kono [3] and Ishitoya-Kono-Toda [5] on spinor groups yields a lower estimate for the L-S category of spinor groups by means of a new computable invariant Mwgt(-;{mathbb{F}_2}) which is stronger than wgt(-;{\\mathbb{F}_2}) introduced in Rudyak [16] and Strom [18]. As a result, we obtain cat(Spin(9)) = Mwgt(Spin(9);\\mathbb{F}_2) = 8 > 6 = wgt(Spin(9);\\mathbb{F}_2).", "revisions": [ { "version": "v1", "updated": "2005-07-23T05:16:41.000Z" } ], "analyses": { "subjects": [ "55M30", "55N20", "57T30" ], "keywords": [ "lusternik-schnirelmann category", "spinor groups yields", "compact connected lie group", "higher hopf invariants", "combining cone decomposition arguments" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7491I" } } }