{ "id": "math/0507240", "version": "v1", "published": "2005-07-12T18:21:22.000Z", "updated": "2005-07-12T18:21:22.000Z", "title": "Combinatorial rigidity for unicritical polynomials", "authors": [ "Artur Avila", "Jeremy Kahn", "Mikhail Lyubich", "Weixiao Shen" ], "comment": "LaTeX, 12 pages", "categories": [ "math.DS" ], "abstract": "We prove that any unicritical polynomial $f_c:z\\mapsto z^d+c$ which is at most finitely renormalizable and has only repelling periodic points is combinatorially rigid. It implies that the connectedness locus (the ``Multibrot set'') is locally connected at the corresponding parameter values. It generalizes Yoccoz's Theorem for quadratics to the higher degree case.", "revisions": [ { "version": "v1", "updated": "2005-07-12T18:21:22.000Z" } ], "analyses": { "subjects": [ "37F45" ], "keywords": [ "unicritical polynomial", "combinatorial rigidity", "generalizes yoccozs theorem", "higher degree case", "repelling periodic points" ], "note": { "typesetting": "LaTeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7240A" } } }