{ "id": "math/0507133", "version": "v1", "published": "2005-07-07T07:44:15.000Z", "updated": "2005-07-07T07:44:15.000Z", "title": "Competition between growths governed by Bernoulli Percolation", "authors": [ "Olivier Garet", "Régine Marchand" ], "comment": "30 pages with figures", "journal": "Markov Processes and Related Fields 12, 4 (01/12/2006) 695-734", "categories": [ "math.PR" ], "abstract": "We study a competition model on $\\mathbb{Z}^d$ where the two infections are driven by supercritical Bernoulli percolations with distinct parameters $p$ and $q$. We prove that, for any $q$, there exist at most countably many values of $p<\\min(q, \\overrightarrow{p\\_c})$ such that coexistence can occur.", "revisions": [ { "version": "v1", "updated": "2005-07-07T07:44:15.000Z" } ], "analyses": { "subjects": [ "60K35", "82B43" ], "keywords": [ "competition model", "supercritical bernoulli percolations", "distinct parameters" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7133G" } } }