{ "id": "math/0507075", "version": "v1", "published": "2005-07-04T17:38:20.000Z", "updated": "2005-07-04T17:38:20.000Z", "title": "Natural connections on the bundle of Riemannian metrics", "authors": [ "Roberto Ferreiro Perez", "Jaime Muñoz Masque" ], "categories": [ "math.DG" ], "abstract": "Let $FM,\\mathcal{M}_M$ be the bundles of linear frames and Riemannian metrics of a manifold $M$, respectively. The existence of a unique $\\mathrm{Diff}M$-invariant connection form on $J^1\\mathcal{M}_M\\times_MFM\\to J^1\\mathcal{M}_M$, which is Riemannian with respect to the universal metric on $J^1\\mathcal{M}_M\\times_MTM$, is proved. Aplications to the construction of universal Pontryagin and Euler forms, are given.", "revisions": [ { "version": "v1", "updated": "2005-07-04T17:38:20.000Z" } ], "analyses": { "subjects": [ "53A55", "53B05", "53B21", "57R20", "58A20", "58D19" ], "keywords": [ "riemannian metrics", "natural connections", "invariant connection form", "euler forms", "linear frames" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7075F" } } }